skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dichtel, William R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 9, 2026
  2. Mechanical bonds arise between molecules that contain interlocked subunits, such as one macrocycle threaded through another. Within polymers, these linkages will confer distinctive mechanical properties and other emergent behaviors, but polymerizations that form mechanical bonds efficiently and use simple monomeric building blocks are rare. In this work, we introduce a solid-state polymerization in which one monomer infiltrates crystals of another to form a macrocycle and mechanical bond at each repeat unit of a two-dimensional (2D) polymer. This mechanically interlocked 2D polymer is formed as a layered solid that is readily exfoliated in common organic solvents, enabling spectroscopic characterization and atomic-resolution imaging using advanced electron microscopy techniques. The 2D mechanically interlocked polymer is easily prepared on multigram scales, which, along with its solution processibility, enables the facile fabrication of composite fibers with Ultem that exhibit enhanced stiffness and strength. 
    more » « less
    Free, publicly-accessible full text available January 17, 2026
  3. Carbamate formation and exchange catalysts enable efficient polyurethane (PU) manufacturing, as well as emerging recycling and reprocessing methods for PU thermosets. Zirconium β-diketonate complexes, such as Zr acetylacetonate [Zr(acac)4], are effective alternatives to toxic organotin catalysts that have been used for PU reprocessing. Here, we report that Zr(acac)4 undergoes a thermally activated process in the PU network during reprocessing that transforms it into a more active carbamate exchange catalyst. This process is associated with the irreversible loss of acetylacetonate ligands and is not observed for the more sterically hindered Zr 2,2,6,6-tetramethyl-3,5-heptanedione [Zr(tmhd)4] complex. Crossover experiments between PU thermoplastics indicated enhanced carbamate exchange after the thermal activation of Zr(acac)4 in the presence of one of the PUs, whereas a sample of Zr(acac)4 activated in the absence of the PU had no catalytic activity. Thermal gravimetric analysis suggested that this process is associated with the loss of one protonated acac ligand. Stress relaxation analysis of PU thermosets indicated a distinct change in the characteristic relaxation time associated with the thermal activation of Zr(acac)4 at temperatures above 140 °C; no such change was observed for samples reprocessed using Zr(tmhd)4. Density functional theory and molecular experiments suggest that irreversible ligand exchange of acac with alkoxide or carbamate reduces the activation energy for urethane formation and reversion. Furthermore, the Zr(acac)4 catalyst activated in the presence of a PU’s polyol precursor provided more porous and less dense PU foams compared to those made using the unactivated Zr(acac)4 catalyst. These findings are important for developing improved PU synthesis and recycling processes. Thermally activating a catalyst during reprocessing may provide more nuanced control of the in-use and reprocessing characteristics of PU thermosets. 
    more » « less
  4. Mechanistic insights into a decarboxylation–defluorination pathway inform methods for perfluorocarboxylic acid mineralization. 
    more » « less